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STABILITY OF RECTANGULAR PLATES WITH LONGITUDINAL OR
TRANSVERSE STIFFENERS UNDER UNIFORM .COMPRESSION*

By R. Bérbré
I. INTRODUCTION -

The proper application of stiffeners, le.e., stiffen-
ing ribs fixed to a plate, leads to an increase of the
\g strength of rectangular plates. In calculating
.ed plates, we have to distinguish between:

Plates with large spacing of the stiffeners in
he bending stiffnesses of the plate and ribs appear
ely in the calculation, and

Plates with small stiffener spacings for which
ding stiffness of plate and stiffeners in the direc-
the stiffeners can be combined to a new bending
ss, provided the stiffeners all have the same cross
+ In general, we are allowed to treat such plates
as orthotroplc plates.

The first investigation on the stability of »lates,
corresponding to 1) above, was made by Timoshenko (refer-
ence 2), who calculated the buckling stress of plates with
one to three longitudinal or transverse stiffeners with
equal spacings. He considered hinged plate edges and two
loadings, uniform compression and pure shear. It is well
to note here that in the following discussion those stif-
feners in the direction of the normal loading are called
longitudinal, and those perpendlcular to the -direction of
loading are called transverse, S

. Timoshenko uses the energy method for solution, a
method which was applied by Bryan (reference 3) in his
classical work on the buckling of a recctangular plate, and
which was later on - taking into consideration the mass
- forces ~ exactly proven by Relssner (reference 4)s Recentw
ly the stiffened plate with one longitudinal stiffener in

"Stabllltat glelchma531g zedrlickter Rechteckplatten mit
Langs- oder Quersteifen." Ingenieur-Archiv, vol. 8,
no. 2, 1937, pp. 117-150,
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the middle of the compression fieldy i.e., the middle of
the plate, stressed by pure bending, compression, or shear,
was considered by Chwalla (references 5 and 6), and the
problem was solved also with the aid of the energy method.

In the application of the energy method, the wave form
is assumed to be represented by a series which satisfies
the boundary conditiong, and the coefficients of which are
determined by minimum energy considerations, : The more ex-
actly the assumed shape of the wave pattern agrees with
the actual pattern, the less terms in the summation are
necessary for a sufficiently accurate calculation of the
buckling stresses. BExact buckling conditions in a finished
form cannot be developed with this method. However, for
some cases, concerning the loading and the reactions of the
plate, we have complete solutions of the differential equa-
tion and in these cases the dbuckling conditions can be rep-
resented exactly. As the stiffened plate consists of a num-
ber of nonstiffened strips which are connected with each
other along the stiffeners, the solutions of the differen-
tial equation for the nonstiffened plate can be accordingly
applied to the stiffened plate.

For the unstiffened plate Timoshenko (reference 7),
Reissner (reference 8), and in a more complete manner,
Chwalla (reference 9) have set up the buckling conditions
for uniform compression in one direction, the loaded edges
being hinged with optional support of the longitudinal
edges; with the aid of the complete solution of the differ=-
ential equation. The solutions for supported transverse
edges and hinged longitudinal edges originate from
Schleicher (reference 10). '

With shear stresses, complete solutions are known only
for the infinitely long strip. The fundamental investiga-
tion for this is the work of Southwell and Skan (reference
11), in which pure shear stress with hinged and fixed lon-
gitudinal edges is investigated., Schmieden (reference 12)
develops solutions for combined shear and compression of
the infinitely long strip.

In the present paper, the completz buckling conditions
of stiffened plates are being developed for uniform compres-
sion. We shall treat plates with one or two longitudinal
. or transverse stiffeners at any point, discuss the buckling
conditions, and evaluate them for different cases,
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For the special case with any number of longitudinal

.stiffeners with equal dimensions and with equal spacings,
. Lokshin (reference 13) has calculated the buckling condi-

tions, However, as we shall prove in the following, these
buckling conditions are not complete.

II, PLATE WITH LONGITUDINAL ST IFFENERS

1. General principles.- The rectangular plate with
the length-width ratio o = a/b is equipped with longitu-
dinal stiffeners at the points y = b,, ¥ =5, + b,, etc.,
by which it is divided into several nonstiffened areas
with the ratios «a, = a/bl’ g = afby eee. ap = a/bp (fig,
1), If the plate is loaded with uniform normal stresses
Oy at the edges x = 0 and =% = a, the buckling deforma-

tion w = w(x,y) of the plate middle area inside of any
field 1 satisfies the differential equation:

4 4 4 2 2
w3 s 3 t to
9——4&+ 2 aawlg 9 eI S "L = Mdyy - —E 8vi |, (1)
o x 3x“dy oy D ox D 3x
3
in which : = B T
12(1 - p?)
is the stiffness and ¢t is the thickness of the plate.
Considering the ratios
= X = L
€ = by’ L b,
O'z ( Tl'g D .
®, = = 7= \o,, = —5— = (Euler dbuckling stress) (ref-
t Ore b, ST

erenbe 14). Infreférence to the width ' b, of the first
plate field, the differential equation (1) chaenges into

. a * - B
A bswy (E,N) + oF ml.éa_gé‘i =0 (2)

Under the'assumption of hinged mounting, (w =Aw = 0)

at the borders ¢ = 0 and ¢ = &,, which is valid for the

following consideratioans, the'differential equation (2)'is
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satisfied by the equation®

(o] m‘-'n‘_
wy = }i“. mi Yy (M) sin Vpy; ¢ with vy, = _?:'ZI (mi=1'2_;5-~--)

(3)
Substituting this solution in equation (2), we obtain
for the function Yp;(M), which only depends upon T, for

every value mj, the ordinary differential equation

v 2 II 2 2 . -2 =
Yoo = 2vp, Yoo+ vE (D - m® @) Yo, =0 . (4)

the solution of which is

Yp, = A3 sinh kli N+ By cosh K;3 M +

i
+ 03 sin Kgpy N + Dy cos Ky T (5)

in which

“31 7 J vmy (7 = vny)

* %
For determining the constants 4A; to Dji, we have

homogeneous equations at our disposaly the solutions w #
0O are only for special values P, the so~called buck-

ling values k,, with the critical buckling stresses

o = k; 0,4. ZEvery term of the solution (3) satisfies the
boundary conditions at the borders ¢ = 0 and ¢ = a,;
therefore for each value m3j buckling values k,; can be

calculated, the buckling areas of which run in a sine curve
in the ¢~direction with m; half-waves. As every two ad-
Joining fields are continuously connected along the longi-
" tudinal stiffeners, it is necessary for obtaining the duck-—
ling, sine-~shaped in the §-~direction, that the number of
half-waves in both fields - and therefore in all fields -
be the same, For this reason, we can put

*Mhis expression, by which the buckle in the ¢-direction
is assumed to be a sine-curve, was used by Timoshenko,
Reissner, and others for problems of stability; actually,

it is even older and was formerly used in probelms for bend-
ing of rectangular plates.
**¥The constants D3 with the subscript i must not be

confused with the stiffness of the plate D,



i

NeAsC. A, Technical Memorandum. No.. 904 5

LS E. vy T oome Ky Tk
‘ o N o - 21 2
'~ The values Kk, and K, are real for the actually
occurring cases, since the buckling stresses of the stiff=-

ened plate, whose borders M =0 and T = b/b; = B are

generally strengthened by some form of support, are greater
than the minimum values of the real solutions (w,/k; = vp)
which give the Euler critical stress

2 .2
. m® mn® D
%k = TR

of the strip with the length a, whose longitudinal edges
are under uniform compression,

. As will be shown in the next section, we have, for
determining the 4r constants Aj, Bj, C3, Dy (i =1, 2,
vee r) four boundary conditions at the borders T = 0 and

and M = b/b, = B and, furthermore, 4(r - 1) +transition-
al conditions at the stiffeners which form a system of 4r
homogeneous equations. We obtain the buckling condition
with the aid of these equations by putting the determinant
of the denominator equal to zero. Cnly the minimum values
of the roots of the buckling equations are of interest, the
other roots representing higher buckling values,

The buckling wvalues 'k with respect to the total
width b of the plate, i.e., (reference 14) k = oyx/0e,
are calculated from k,:

2]

b 2
Oa.e 2
ko= ky =5 o=k (T:) =k, B

2e Boundary and transitional conditions.- At the
borders NM=0 and 1N = B, the plate is generally con=
nected to edge supports. In many cases these supports
have relatively large and compact cross sections, so that
a certain elastic mounting of the plate with them is given,
This mounting should be taken into account in the general
boundary conditionsg. (See reference 9.)

For the stiffeners and supports O to r, respec—
tively, we introduce the following notations:
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Fq to F., cross sections
E Jﬂn to E Jﬂr' bending stiffness about T axis

G T, to @ T,, torsional stiffness*

Along the border line T = O Dbetween the field 1
and the support O, there acts as an internal force the
bending moment

D aawl 8W1 ™\
"R Naw T e ©
and the reaction forces
3 : 3
D 3w 3 Ww.\-
b, on ot"om

of the plate field 1, which, if we consider the plate cut
off along the support, are to be applied as external loads
to the support (fig. 2).

The bending moments mn create a torsional stress in
the support. The change of the total torsional moment Mg

acting at the point ¢ 1is therefore

Under the assumption that the change of slope of the
cross sections can be neglected in the torsion considera-
tion, which applies exactly only for circular and ring-
shaped plates, but can be approximately assumed for other
shapes, the mutual twisting d¢ of the stiffening element
b, d¢ is: :

M-gbd_
‘”"Emol ¢
and from this follows:
; d.d
My, = G T, ————
o
4 b,dt

*The values To to Tp may be taken from the results of

Webert!s work (reference 15) or from that of Forster (ref=
erence 16),
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On account of the continuous connection of stiffener
and -plate, the twisting of the stlffener is equal to the
slope of the plate, i, e, o

oW,
3 n %, af
therefore
azs 83w1

so that the first boundary condition at the p01nt N =20
is

D agw aaw asw
- 1 + W -1 = G T 1 (8)
b2 N an° 3t? © %,% 3 t2a 0.

The reactions an of the plate field 1 create in the
support a bending moment Mn about the TN-axis, assuming
the border of the plate to be at the shear center of the

support, If, at the same time, the support is acted on dy
the compression stresses oggx), then, at its ends, we have

the compression forces
Po = oxx Fo =k, 0,6 Fp

which at the point ¢ induce the bending moment P, w, .
For the bending of the stiffener which, on account of the
continuous connection between it and the sheet, agrees
with the deflections w, for TN = 0, we have therefore
the differential equation
2
EJno——é—E—l———=-M=QMn~POW

.bla 3 ga 1

From this, by differentiating twice with respect to £ a
second boundary condition for T = 0 1is obtained:

3 2
D /ow 3° d W
R SR (i 1 —=— S B e
i e + (2-p) YE aﬂ ky, 0,6 Fo YL
(9)

For the support r, 1i.,e., for TN = B, the corresponding
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boundary conditions are

2 2 3 \
D_(8 ¥y, , 87 - 3" Wy

D oy p i) T (10)

b,2 N an? 3 2) T v 3t an
and

4 3
. d Wnp D /3 Ve 3° Wy o Wy
i oty = — (205 #(2-p) =) -k, 0y Fo —mg  (11)
ﬂr ag b1 a3 agESH 1 %1e “o g t

Between the adjoining fields 1 and i + 1, there
is the stiffener 1 with the cross section F; and the

moment of inertia Jﬂi about the MNwaxig. At the stiff-

ener, the conditions of continuous connection to the sheet
have to be first satisfied. Therefore, for

by + by + ess + by

N = B
we obtain
and '
ows _ OWii, )
3% ° 5 h (13)

Since the cross sections of the stiffeners generally
have I, L, or Z formg, indicating no great torsional
stiffness, we may neglaet the torsional stress which oc~-
curs in the stiffeners due to the bending of the plate.:
The experiments of Erlemann (reference 17) Jjustify this
assumption. The moments m of the fields 1 and i+1

at the stiffener are therefore equal, i.€.,

D (3w %wy D (3 Wire
21 - g_ - - 2 :é-l‘l + o_r 1+1> (14.-8.)
b,. San at o, a1

Along the stiffener, we have, as a further condition of
the continuity

2 2 ’

5i5 T el (14v)

so that the transitional condition {1l4a) becomes
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g'ﬂi - aawi-i-l
a,mE T e

Considering the fields i and 1+1 as cut off at the
stiffener, a transitional condition corregponding to bound-
ary condition (9) applies, but instead of the reaction force
of the border field, the difference between the reactions
of the fields 1 and i+l, adjoining at the stiffener,
have to be introduced, Therefore,

(14)

4 3 3 3
o wy D 3 Wy, Wiy ow
Moy Z3¢% b, N an° atean ang
3 2
d ws 0o Wy
- (2"'}5‘) é“gg%‘ﬁ) - k]_ Tie Fi -é-g—é- (153.) |

Considering equations (13) and (14b), we have at the gtiffe
ener,

3 3
3" wy - 0" Wit

3t amn at3an

(15Db)

so that the transitional condition (15a) is simplified to

4 3 3 2
Blp, ek oD (3 Waen 3 W) L 3wy
ni ble 3 E4 b, an3 ans 1 T, f1 ate
(15)

In the term on the left side and the last term

of the right side, the index i of w may be replaced

by i+ 1, as it makes no difference to which of the ad-
Joining fields the deflections of the stiffener are refer-
enced., Equation (15) applies exactly only to the symmet-
rically connected stiffener, the neutral axis of which co-
incides with that of the rlate, In many cases, the gtiff-
ener will be fastened only on one side of the plate, In
this case, according to the proposition of Timoshenko (ref=
erence 2), the moment of inertia Jﬂi must be referred to

the axis which lies in the connecting surface between the
stiffener and plate. The additional stresses 1In the plate
which arise from this condition are not taken into conside~
eration. They fade very fast along the effective width in
the TN-direction, according to statements by Chwalla (refer-
ence 18).




Table 1
a \ b c d e f g h
Gl A, l B, C, D, A, B, C, D,
) Wy | + & — W%, — e
2 () x4 i — P, + %3 Cq — Dy
3| (12) ® Gin %y ® Cof », i sin %, COS %, g — Giny G of %, — sin x, — COS %y
4l (14) % Ging GCofx - | msinkg | — oS %, —x Ginx — %3 Cof , + 3 sinx, + #3 COS %
51 (13) %, €of #, % Ginsg l g COS X%y ~— %, Sin %, . — %, Cof % — %, Ginxy — %4 COS X4 + g sin %,
, — ¢} Cof 2, — x} Ginsey + %3 cos x, — 3 sin x, RS . . .
61 (57 + @, Ginx + @, Cof + D, sinzx, -+ @, cos x4 + % Cof %, + x} Ginzx xg‘cos ®y + a5 sin xy
- (1o e Sin B % e, ®of B2, . — eq 5in B, — 508 f %,
“1 : P+ Wy Cof By | + Wy GinPay | + Wargcos feg | — Wynysin iy
s| ‘ | % Coffx %, 0, Sin By — %y C3 COS %, %q Cy SIN f 2,
_ ) ' : i — @, Sin g — @, Cof B, — @, sin S, — @, cos f %4
'® =sinh :
® =cosh

o1

$06 ‘O UMPURIOWSN [EOTUWISL *V°O°V'NK
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In the following, we take the ratios between bending

stiffnesses, dependent .upon the cross sections of the stiff-

eners, and those of the plate from Timoshenko (reference 2):

BJ . kg b
. — i _ o = .
Yy = 5‘1‘%—: Yy = b%i‘_. Yii g
Ty ' Fy 'bl.
11 = Ty Si =%y = Pei g
and, to abbreviate, we place
Edms Fsb
G Ty 192
and Vi = 5 v

After introducing the solution (3) in the boundary
and transitional conditions (8) to (15), the following
equations, independent of ¢ are obtained, which serve to
determine the constants & to D in the functions Y. In
these equations the index m (m = number of half-waves in
the ¢-direction) is omitted for reasons of simplification,

1

Y, =V ¥y - uvEy =0 (8')
1 for N =0
- ¥, + v2 (2-p) Yy - @, Y, =0 (91)
T+ W, Yt - pvBY, =0 (101)
for 1M = B
* Yp'e v® (2-p) Yo' - 0L Y. =0 (111)
Ty = Y40, = O] (1271)
t
Yl —.‘Yi"‘l - 0 b1+ba+ sae +bi (13')
u s ¢ for T = b y
Yl - Yi+1 = O 1 (14-',)
1y (513
=Yg + Y5, ,+0:7,= 0] (151)
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3, Plate with one longitudinal stiffener.-~ In the
case of one longitudinal stlffener, r = 2, With the so-
lutions, :

wy, =% sinv ¢, Yy = A, sinh kK; M+ B, cosh Ky T +
+ C, sin Kz M + D, cos Ky T,

Y, sinvg, Y, = Ay sinh k; N + By cosh k; M +

i

Wa
+ Cp sin K; M + D2 cos K T

we obtain from (8!') to (15!') a system of homogeneous equa-
tions, the coefficients of which, with the abbreviations

- a2 2 _ 2
el = K’l had MU~, 92 = Kgg + N' U
C. = K2 = (2 - ) c, = K2 + pF(2 = u)
1 T Ky M7, 2 = K2
(el + ea = Cl + CZ = K-la + Kaa)

are shown in table 1. This tadble is, at the same time,
the denominator determinant to be solved, the lines of
which are denoted by the numbers 1 to 8, and the columns
by the letters a to h.

a) Soiution of the determinant and the general buck-
ling condifionsg.- Solving this determinant, we denote the
subdeterminants asg follows:

1, 2
s

2,

is the subdeterminant which is obtained from the complete
determinant by canceling the lines 1 and 2 and the col-
umns a and b. The determinants marked with overlining
are to be formed from the subdeterminants on the left side
of the equation,

After sliminating the lines 1 and 2, - the determi-
nant becomes:
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i,2 1,2

Fa OeRareren) 1]+ ek volkiterad [11]
i,z2
+ By (Y0,=c o) a:d

(16)
: . 1,2 1,2
+ Ky (=Y, Pstcge,) |b:c + @, (K42 + K2 b:d +
1,2
+ Ka (Y@, +czez) c:J
- J

The lines 1 and 2 contain only the unknowns 4, to D,, the
lines 7 and 8, only the unknowns A, to D;. According to

this, the lines 1 and 2 are independent of the lines 7 and

8y so that in the following elimination of the lines 7 and 8,
the subdeterminants

d

1, 2
c, 4

with p = a, b, ¢, and g = b, ¢, 4 {(p # q) occurring
in (16), may be =zenerally denoted by

‘7‘?”5‘
e, T

+ [(Vy%; = cye,) kK, cosh B k, sin B Kk, +

1, 2
‘p: q\z (= cyey = ¥,2,) 4,

+ (~V,0;4+ cpey) Kk, sinh B Ky cos B K, +

+0,(k,®+1,%) sinh B K, sin B Ky +
'7T"ﬂ
e, &

+ Yy Ky Kg (K %+K®) cosh B K, cos B Kyl
2



14 N.A.C.A, Technical Memorandum No., 904.

+ (— WDy + c5 &) %5 €in Bre; sin f #y — Dy (12 + %3) Sin B 35cos f s, +

+ W, 50y 2 (32 +2) C0f By sin f 2y -+ (— W, Dy + ¢4 €5) %, E0f B %, cos Bty l7’ ‘

+ [(— Wy @y + ¢ e5) 2, €in oy sin f 2y — Wy 31 225 (%2 + %) Ein B, cos fxy —
— @, (4§ -+ #3) Coi f 2 sin Bty + (¥, @y — cye0) 4, 0 oty cos fg] |

+ [— WPy, %5 (28 + 22) &in B 2, sin B sy + (W Py — ¢, €5) %, €int f 3, cos B 2, +

7, 8
Ik

+ (P Dy — ¢y 8)) 2, Cof oy sin f oy + Dy (2§ + 23) Cof By cos f 5]

, 8
+ (—caey — ¥, Dy) %, Z,, I3 ;
Separating the factors of Qa’ Wa and ¢2a Wa, we get
;; =“”1‘:131| ' "25232i7'
+z1clez( Cof B2, sin B 2, 7’ I—i—@o]ﬂxlcosﬁuz +
-;—@inﬂxlsinﬂlef ’——\,tnﬂzlcosﬁrzi z)
+'z262e1(—|-@inﬁxlcosﬂxg,z:g‘—}—@inﬁxlsinﬁxz 2‘

,—Gofﬂxlcosﬂnzﬁ — Cof B s, sin B x, !7' )

‘|

+ D, (32 4 #3) <\.,mﬁx1 smﬁn2 | — &in f§ %, cos f x, Iz_ﬂ —_
_(So]'ﬂxlsinﬁxzf ’ }—I—@oiﬂxlcosﬁle; 2'

+ Wy 2y %5 (6§ + 3) (@Dfﬂxlcosﬂxz’ “l‘ (501/3"15111/3"2, Z ’ -

7

—Cmﬁnlcos,B:\\cz)]¢ ’—\.,m/S‘xlsmﬁx2 ) 2'
+<pz.yf2[x1 —18' f|—|-($oiﬂxlsinﬂx2 e’g’——@o]ﬂxlcosﬁ '8’—

——Cmﬁxlsmﬂxz‘ |—!—@mﬂxlcosﬂx2 8‘)

A

+ "2 — ‘g M l~— \_,mﬂxlcosﬂle ‘— &infx, sin fx,

—{—Gofﬂxlcosﬂxz (—}—(So ﬂrlsmﬂx2’f 3 )]

- (17)

The solution of the remaining subdeterminants with

four columns gives the following values:

, 2,7, 8
rin e |
zIz: Z: Z: le — D %y (22 + %Z) Cof s, cos x,,
;: Z Z il“‘ — Dy 5 (] + #3) Coja sin ,,
tIz z ; :v #y (4] + #3) Sinze; cos #,,
(Iz Z Z Z = — @, %, (%} + #3) Sinx,; sin sz,
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= 4 2y %, (%} + %3)2,

=t Dy 2y (2 +2¢8) Eofx, coswy,
=o0,
= — Byt (6 + 4 o,

= 4 @y (4 + #3) cos?n,

= (o + #) [— 2%z (4 + #F) + Dy (g sin 2, COS 225 — 25 Gin ey €0 )],
= -+ D2, (33 + 22) Cofx, cos x,,

= + Dy %y (¢} + #5) Cof %, sinxy,

&
an
>

3

=+ Dy %, (f + #3) Cof2xy,

]
| N
S

3

=0

?

I

= (x} + 28) [+ 1 %y (5 -+ #B) + Dy (% sin %, cOs 365 + %, Sin 2, Cof2y)],

-

=+ Dy (1] + ) sin® x,

3

= + Dy %, (2} + x§) Cofs, sinx,,

SN RN RN AN AN
BRI =

= 4 Dy %y (2 -+ x2) Sin s, cos %y,

S
-
>

S

= — Dy (4 4 3) cos® x,,

] S
N o N
)
<

= (x} + 23) [+ 2y %y (3 + #B) — D, (% sin %, cos xy + #, Sin x; Cofx,)]

o
A

»
J
h

=O’

Ralked
A
by

-

» !
N 3
S 00 R0 IO 0 W00 0 00 WO ] O 00 I O0OY 00~ 00 OO IO00OR 00 [0 00~ 00 MO0 WO O OO 0O~ 00 IO

= — Dy %y (] + #3) Sin®xy,

Ll
<
»
™
-

2, 7,
¢ g
2, 7,
d, e,
2, 7
d, e,
2, 7:
a, e,
z, 7,
4, f,
2, 7,
a, f,
2, 7,
4, g,

2’ 7!
¢, d, e,

-

= + D, %, (#% + x2) Sinx, cos x,,

S O

-

= + D, %, (x¢ + x8) Gin s, sin %,,

-

= (x§ 4 268) [— 2y %5 (23 + #3) + @, (— , sin %, cos %y -+ %, Gin % €of %)]

ol

-

= — @y, (18 + ) sin®ns,

S
-

-

= + @y 2y (43 + #3) Giti* 24,

-

I
o

-

= + D, %, (2% + »3) Sin »; sin »,,

= (4 + ),

-

HQ‘H_G"H G"‘H
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;, 2: Z, 2 = — D %, (3 + 23) €0y cos xg,

. 2, Z, Z:Z = — Dy (6} +#3) (;ofxl sin %y,
z Z 7f' : = — Dy, (o} + ) éimﬁcosx,,
ba T = — By (6 + ) Ginny siney,
Y

Substituting these values into the subdeterminants
(17) and these again in (16), we obtain, dy putting this
expression equal zero and by arranging the memdbers, the
general buckling conditioens
(26§ + #8) [Zo + (Do + P2) Zy + (W + Vo) Zy + (P ¥y + P Wy) Z5 +
+ PPy Zy + (P Wy + Py Wo) Zy + Vo Wy Ze +
+ (@ Py ¥y + PPy W) Zy + (P Py Py + Py ¥ W) Zg + Do Do ¥y ¥y Zy +
+ By (Zig+ Po Zyy + Py 213+ Po Z1s + Py Zas + PoWo Zis + P ¥y 216 +
+ Dy Py Zyg + Py Wy Zig + Py W Z1o +Fo ¥y Zog + Po P ¥y Zn +
+ D, ¢2W2222 F+ DWWy Zog + Py ¥y Vo Zoy + Dy D, ¥, ¥, Zy5)| = 0.
In this equation:
Zo == 5y 20 (262 + %) [226) 2% €21 85 (€0 By cOS freg— 1) -+ (x5 c§ €] — ]} €3) Sin f ¢ sin Py,
Zy =y (5f + #8)? (s €1 €3 €0f B2ty sin Bty — 205 €3 € Bin B2 cOs fz,),
Zy =} o} (1 + %)? (31 €1 €5 Gin By cOS By + %y g €, Cof oty sin fy),
Zg =1y 20q (1] + #8) [— 21 %5 (C1 &y + €3 89) + (W crey"— 2] ca €)) Gin By sin By —
— 2y %3 (€3 €1 + €3 €5) €of By cos Bxy],
— %1 % (06§ + #3)° Sin B oty sin fotg,
— 222 8 + #3)3 Gof By cos Btz
1253 (1 + #8)8 Oin By sin By = — 3 Z,
2y %y (3 + %)% (— , €of B2 sin By + %3 Sin B, cos f2y),
o = 3 3 (063 + #§)? (— 2 Sin Py cos freg — 2, Cof B2, 5in fxy),
Zy =y %5 (05 + 63) [2%) %, (Cof By cos By — 1) + (] — ) Gin Sy sin fug], |
Zyo == %y %y €1 G2 € €3 (— %5 Sin f2; cos By + 2, €of B2, sin fxy)
+ 2y %5 (1 &4+ 3 83) [y €1 €3 (€0f 2 sin %y + Cof (B — 1) 2y sin (B — 1) %) —
— ¥y Cg &y (Sint %y cos %3 + Sin (B — 1) %, cos (B— I)x,)]
22 c2 e} [y $in B x, €0f 2, €of (B — 1) %y — %, Sin B2 sin %y sin (B — 1) %]
+ x c €2 [, Sin By cos #g cOs (B — I) 2y — 2 5in f 2y Sin sy Sin (B — 1) %],

Zﬁ = (3 + 23) [— %, %5 (€1 €, + ¢ 85) Gin T _"11) " sin T —”’1} e

(18)

I

4

I

5

I

7

NNNNN
I

I

ey 6 (xl Coi B % sin %, sin (f — 1) %y — %, sin B %, Gin T _”11) x @oi(ﬁ _”:) "1)

+ 2y Cn el(-— %, Gin B,y sin(ﬁ __”'I) x"cos # —x:) 2 | 2, cos B, Sin #, Sin (B — I)xl)],
Z}Z = 2y 2y (%2 + %) [—— %, %y (€1 & + €5 25) C0f B _"‘I) 2, 08 @ _f’I) "

+ 2614 (xl &in f %, cos * _”’ sin —x:) 2 _ 3, cos B, €ojx, €of (B — 1)x1>

X) 2y
—I—x252e1(—xlﬁoiﬂxlcosxzcos(ﬂ— 1)y —

—ysin o 6of ") @in (B —1) "1)]

1) *,
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Zig_: #y%g (€1 €4 + €y €5) [xz(%in T ”I) x, €08 (g _'xi)' xl(Soi 6 — 1) sm (8 321) ]
+ 23,9, [71 ¢y €5 Cof =1 mg gl—Dm_ %y c5e, Sin 61 "1 cos #~1) "BJ -
*y ¥y "1 2
+ 243 61 €5 [0ty Gin Bty sin %y 'sin (13 — 1) %y — %z sin f 2, €0, Cof (B — 1) 2]
-+ 3¢5 2, [cl e2<— #; €of B2, cos ® _”;) " sin @ _x:) g
. (B—1) % & % -
+ g cos 2, Eof x l@:m(ﬁ_;) %1)

+eaey (= Cof g msin g " cos _x:) =+

. (B—1) % ” '
+ 2, cos fx, Sin x IGDi(ﬁ_;) x1>]
+ #3Co0y [0, Sin B oy cOs 3¢5 cOS (B — 1) 225 + 2, sin P, Ginxy Gin (f — 1) %],
= (o} + 23)%[~— 2, Sin B, sin x, sin (B — 1) #, + %, sin B %y Ginwy Sin (B — 1) %],

ZiS = 1ty 2y (263 - 23)? [— %, CofBaysin,, ™,  cos # -xl) ey
2 2

(B —1) =
+ %5 coS f %y Gin # _";) " Gof _x:) m] ,
Zog = — 3 13 (w} + 28)2 [, Sin B, cos %y COs (B — 1) 25 + 2, sin By €of 2, Cof (B — 1)x,],
Z;; = (} + ) [— 23, %, Gin (¢ —x:) * gin B _x:) 2

+ 4y (— 23 Gof Bty sin s in (B — 1) g + 2z 5im 25 G ) 5, ©in < ‘x:) "1)
+ 2, <+x1 Sin B, cos # x*) sin#— D% _ %y COS 8 %, Sin oy Sin (B — 1) x1>] ,

%y

Zg:z = 2y %y (2 + x3) [—- 2 3, %y (Sof(ﬂ x:) * cos (’3_”:) 2

+ 2, <—— %, Gin B 2, sin (ﬁ—le) x, €S B—1)m 4 %5 cos B 2, Cof %, Cof (B — 1) xl)

¥a
+ %, (xl Cof B #; cos %y cos (B — I) %y + 2, sin B %, Sin (ﬁ—xlx) " Eof (ﬂ_x:) ” )}
Zas =2y %5 (2t C0f B %y sin f x, — %, cOs B %, Gin f22y)
— 2263 %y (€of (B — 1) %, sin (B — 1) %, + Cof % sin 2y)
+ 25 %% (Sin (B — 1) %, cos (B — I) %y + Sin #; cos x,)
+ #} (— %, Sin B3, 5in %y sin (B — 1) 25 - %, sin B %, Eof 2, €of (B — 1) 24)
+ 23 (— 2, Sin B #;c08 %y cos (B — I) %, — sy sin f %, Sin 2, Sin (B — 1) 2,).

Fror this general buckling condition there can be
derived a number of specilal cases concerning the bound-
ary conditions which, however, can only be solved with
a great amount of calculation. In the following we shall
discuss and evaluate numerically two simple limiting
cases, namely, hinged and fixed longitudinal borders, re-
spectively. .

b) Hinged longitudipnal bordere.- For hinged, but

rigid mounting (w = Aw = 0) of the longitudinal borders
NM=0 and N = b/b =B, we have T =T =0 and Jno
= J\na =, 80 tha.t Co

\Vo=\l’3=0, <b°=d>8=oo
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After dividing equation (18) by the factors &, and
@a the buckling condition becomes:

(K2 % + #22) [24 + & Z;,] = O
or

- KyKy (K24 K8) sinh BK; sin BKj
+ @1 ["‘ K‘l Sinh B K’l gsin K'.a Sin (B“‘l) Ka + (19)
+ Ky sin B K, sinh kK, sinh (B~1l) K,] =0

in which the factor (K;2 + Kz2®) has been left out, as
it cannot become zero according to hypothesis.

For the limitation, that the ratio of the field
widths b,/b, is a real fraction, a further splitting of

the buckling condition (19) is possible, This limitation
is given by

b, = rt, b, = s

in which r, s and 1r+s = u are positive whole numbers.
With

K K

-t = t —_—2 = t

T K15 r K2

the buckling condition (19) becomes

-k Ky( K2+ Ka®) sinh uw Ky' sin u Kp'

1

+®,(= k; sinh u K, sin r k' sin s k' (20)

+ K, sin u K, sinh rnl' sinh sKl') (0]

or, since the left side contains the mutual factors
sinh Kl' and sin K,'

-

s 1 s ]
v o3 ' 2 2y sinh v K;' sin u K,
sinh k,"' sin Kk, L-Klna( K5+ Ky )

sinh K;' sin Kkp'

sinh u K,' sin r k' sin s Kp!

+ - + 21
° ( ®1 TeInh Ky sin Kp' (21)

+|€2

sin u Kp' sinh r K;' sinh S_K1'> o
sin Kj' sinh K,'



"N.A.C.A. Technical Memorandum No. 904 " 19
in which the quotlents in the large brackets are related
terms.‘V e e o ) . - B R T, -

The'ouckling condltlon (21) is satisfied by putting
each factor on the left side equal zero, so that 1t splits

up in two buckling conditions, after dividlng through
sinh K,' (since by hypothesis sinh K, ! # 0), which cor~

respond to two basically different bduckling forms.
The buckling condition
sin k' =0 , (22)

is independent of &,; 1its solutions are

Ky = 0, rm, 2T T eesse
The solution Ky, = O cancels by hypothesis; to the remain-
ing solutions belong the buckling values
N2 e
- p2 (T, v 2 (2z_m )

k, =x (v + rﬂ) ’ 4r ( > + 5 ﬂ) “eoe
and . :

- w22 (rBa _m_ \® Anm2a2 <?r5m m  \2

k = r®p (m ¥ gz ) 4r®e . +2rscc>"" (23)

respectively,

These, however, are the samc buckling valucs for which the
nonstiffened plate with the ratio o 3in the T-direction
buckles with (r + &), 2(r + s)... and in g-direction
with m half-waves. (See reference 2.)

Along the stiffener there is formed a nodal line, so
that the stiffener is twisted dbut suffers no bending. The
dimensions of the stiffener therefore are without influ-
ence upon the buckling stresses, according to (22) because
of the neglect of its torsional stiffness, These buckling
stresses are, in general, so great that, practically, they
occur very seldom. (Comparc with this the following exam-

Ples: longitudinal stiffener in the distance b1 b

1
and b, = z b, respectively). In most cases, plate and

stiffcener buckle at the same time at small k values, which
are obtained from the buckling condition:
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(K2 + K,2) =
1 2 (24)

=_O

! 3 y ! 3 ! 3 t
o (sin r Kp' sin 8 Ky N ginh r K,'! sinh s K, >
1

. t ] U
Ky, sin u K K, sinh u K,

formed by putting the last factor in equation (21) equal
to zcro.

Not considering the hicher dbuckling stresses, the
buckling values grow according to (24) as the stiffness
Y, =Y increases (sece following examples) and reach at
Y = @ i.6., for a knife-edge mounting of the plate along
the stiffener, their maximum values. Since at Y = o

o, = @, the buckling condition for knife-edge mounting
along the stiffencr is obtained from (24) by placing the
factor of ®1 equal to zero; the buckling condition is
therefore:

sin r Kp' sin s Kp'! sinh r k,' sinh s K,'

- + - =0 (25)
Ky sin u K,' K, sinh u Ky'

¢) Examples:

. Longitudinal stiffener spaced at Db, = % b and

1
b, = % b, respectively.-~ Having one longitudinal stiff-
ener at b, = g (r =1, s =2), the buckling stresses
are, using (22) and (23), respectively,
3 2 6 ]
- °& _m ode n
k =9 m+3a>, 36<m+6a)....

In this, the first-term (buckling form: % halfewaves in T-
direction (see fig. 3,I) contains the minimum values k =
9x4 = 36 with 2% = 1; i.e., for the ratios a = 1/3  at
m=1l, a-=2/3 at m 2 e For a longitudinal stiff-
ener at a distance b, b/4, the corresponding dbuckling
values are :

o

_ .
k = 16 9-95+—-‘9->... 2 64
. m 4o

The buckling stresses according to (24) and (25) (buckling
forms, sece fig. 3,II), are calculated for the same values
of Y and & and plotted against o in figure 4. These
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buckling stresses are, even for Y =oc, essentially smalle

-er: than the ones from (23) with- the minimum values Lk =

36,and 64, respectively, so that the buckling- conditidn g

(22) has no practical significance.

The buckling-stress curves from (25), i.e., for Y =
® (figs., 4 and 5) have no points of inflection, similar
to the axes for ¥ = 8 = 0 .(nonstiffened plate), but each

. . Lo b 1
has only a minimunm (k = 10.6 for -3 = 5’ k = 8.56 for
1 . L : ~
l = ) so that the plate buckles in ¢-direction in the

sequence 1,2,3 ... half-waves for increasing values of «a.
However, for finite values of Y some of the curves have
points of inflection; for ¥ = 10, in the examples, the
curve even has a maximum and consequently, two minima.
From this fact follows that the plate in the example

b,/b = 1/3 ‘and ¥ = 10  buckles for increasing wvalues of

the ratio o, in the followine sequence of the longitu-~
dinal waves m:

8 = O ] ‘6=Q.l
0. < o < 0.95 m=1 0. <o < 1,00 m = 1
0.95 <« o < 1,49 m= 2 1,00 <« @ < 1.26 m = 2
le49 <@ < 2.31L | m =1 1.26 < @ < 2464 m = 1
2.3l < a < 3,02 |.m = 4
etc.

Corresponding relations are shown in the example bl/b =

1/4 (fig. 5)., For large values of o the curves in
their range of valldity approach gradually the value of
the minimum with the smaller ordinate.

In tadle 2 the smallest buckling values k are given
for the ratios o = 0,6, 1.0, 1.4, 1.8, TFor the accurate
calculation of the numerical values the tables of circular
and hyperbolic functions by Hayashi (Berlin, 1926) with
seven and more figures were used,
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TABLE 2

b,/p | Y| 8 : - & : :
0.6 pis} 1.0 m l.4 m 1.8 m
0 9.849 | 1| 84959 1| 1 7.852 | 1| 7,756 1
5| 0.1 | 9.796 (1| 8.413 |1 7.009 | 1| 6.808] 1
1/3 0.2 | 9.735 |1 | 7.86111 6.293 | 1|' 6,045 1
0 10,215 | 1| 10.697 | 2 |10.,244 |2} 9.754| 1
10| 0.1 [10.201 |1 |10.652 | 1 9.549 | 1| 8.658 | 1
0.2 [10.186 |1 |10:323 |1 g.742 | 1| 7.747 | 1
0 8.062 |1 | 7,015 |1 6.643 | 1| 6.997 | 1
5| 0.1 | 8.032 |1 ] 6.808{1 6,181 | 1| 6.441 | 1
1/a | 0.2 | 7:999 |1 ] 6.539 |1 6.751 | 1| 5.909 | 1
0 8.362 [1 | 8.266 |1 8,006 | 2| 8,182 | 2
10{ 0.1 | 8,317 |1 | 8.128 |1 7.786 | 1| 7,659 | 1
0.2 | 8.308111 7.979 |1 7.368 | 1| 7,104 1 1

2+ Longitudinal stiffener in the middle of the plate.-
If the stiffener lies in the middle of the plate (b, =

%9 r = s = 1), the plate dbuckles according to equations

(22) and. (23) with one nodal line in the middle at the vale
ues

ko= 4 (2% 4+ 1), - (e8)
m 2a
the minimum values of which are k = 16 at the points

a;% (m :ll), o = 1 (m=2)s eteh.

The corresponding buckling forms are antisymmetrical
to the center line M =1 (fig, 6,I). The buckling con-
dition (24) changes into* .

*The buckling condition (27) is also present in the gener-
2l solutions by Lokshin (reference 13), in which, for the
special case of an arbitrary number of equal stiffeners
equally spaced, only the syvmmetrical buckling forms are
considered. While in our case - same as in certain cases
for plates with an odd number of longitudinal or transver-
sal stiffeners -~ the antisymmetrical buckling cases can be
derived without difficulties from the symmetrical buckling
cases with respect to half the plate width or length, this
cannot be done at an even number of stiffeners. Byt the
antisymmetrical buckling cascs give in certain resgions the
smallest duckling values, as will be shown later at exam-
vles of a plate with two longitudinal or transversal gtiff-
eners,
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NI . h tan .
-2 (K% + Ky%) + @1.<Fann Ky ai.&§> =0 . (27)

1 ' 2

®, 1t becomes

tanh Kk,  tan K, _ o ) ..(28)
Ky Ka . , :

'Equation (28) agrees ‘with the buckling condition of a plate

with the width b/2, one longitudinal border of which is
hinged and the other fixed (reference 8), so that the cor-
responding buckling form is symmetrical to the conter line
NM=1 (fig. 8,1Ib).

Timéshenko (reference 2) calculated the smallest buck-
ling stresseg for the plate with longitudinal stiffenex in
the middle by means of the energy method.

Contrary to the example with one longitudinal stiff-
ener at a distance b, = b/3 or b, = b/4, in our case,

b, = b/2, the buckling form with the nodal line at the

stiffoner is of importance. With increasing VY, at first
(27) gives the smallest buckling stresses, until at a cer-
tain value of ¥, which may be dAenoted as minimum stiff-

ness (;3,Y), the same buckling values as with (26) are

obtained, 4n increase of Y does not lead to a further
increase of the buckling gstresses, as the smallest buck-
ling stresses are then obtained from the bduckling condi-
tion (22), and (26), respectively, which is independent of
Y, and for which the plate buckles with one nodal line at
the stiffener. Hence the wvalue jin¥Y 1is at least required

to get the maximum value of a plate with longitudinal stiff-
ener in the middle. The minimum stiffnesses have been cal-
culated numerically by the author in a special paper (ref-
erence .19).

. %. Dependence of the dbuckling stresses on the posi-
tion of the longitudinal stiffencr.- The dependence of the
buckling stresses k on the ratio bl/b, is shown in -fig-

‘ure 7 for the square plate, for different values of Y (at
8= 0), acecording to (19)., PFor reasons of symmetry, the

curves run symmetrical to the center line b, = 0:5. In the
case of the stiffener lying at the border TN =0 (b,/b = 0),

the buckling values for every value Y, with any dbut fi-
nite magnitude, are equal to those of the plate hinged at




24 N.A.,CsA. Technical Memorandum No. 904

the four sides; thus, kX = 4 (for one half-wave in longi-
tudinal direction), and k = 6.25 (for two half-waves).
However, for Y = o, the border T = 0 1is considered as
built in, as the buckling stresses in this case take the
values k = 5,74 and k = 6,85, respectively, of a plate
fixed at one longitudinal border and hinged at the other
points. The dbuckline values increase for increasing bor-
der distance ©b,, depending upon the magnitude of V.

For knife~ecdge mounting along the stiffener (Y = ) the
curve (for m = 1) reaches its maximum value k = 25 for
bl/b = 045. To this value corresponds a buckling form with

one nodal line at the middle stiffener., The corresponding
maximum value for m =2 is k = 16.

Both curves intersect each other_at the poiat b,/b =
0.16, so that for border distances Ei < 0.16, we obtain

the smallest buckling stresses for one longitudinal wave,

: b
and for border distances f; > 0,16 for two longitudinal

waves. The full line (see fig, 7) consisting of these two
curves, which contains the smallesgt buckling values for

Y =o, represents at the same time the upper limit for
all buckling stresses occurring in practical cases.

For values Y < Yp3, (for instance, Y = 1,3,5 in
fig. 7) plate and stiffencr buckle in the entire region
with oné longitudinal wave. With the value of the minimun
stiffness, that is, in this example, Ypin = 7.23, accord-
ing to table 2 of reference 19, the maximum value k = 186
is rcached at the point b,/b = 0.5 with m = 1. For val-

ues Y 2> Ypip in a mean region, the magnitude of which

depends upon Y, the buckling valucs for m =2 longitu-
dinal waves are determining,

] In the neighborhood of the center of the plate the or-
dinates of the curve for Y = Yp3, e practically equal to
those of the limiting curve for Y = o (m =2). In b,/b =
Oe4, the difference only amounts to about 2.5 percent.

For a stiffener near the middle of the plate the same is
true, namely, that an increase of the stiffness over the
value Ypin does not have as a result an increase of the

buckling stresses,

d) Fized longitudinal borders.~ With borders N = O
and M = b/b; = B Dbuilt in, the values
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. JnO = an = TO = T = o
and at the same time
@0 = @2 = m, \lfo = v‘ya = o

Dividing the general buckling condition (18) through
the factors @5, 95, Yo» VY, the members containing thesge

factors in the denominator are, with the values above,
equal to zero and the buckling condition becomes

(k2 + K2B) (Z,+ @, 2,,) =0
or

Ky Kg (K,2+ K,®) [2k,K,(cosh Bk, cos Bky=1) +
+ (KgP~ k;®)sinh Bk, sin BK,]
+ 0, {nlna [k, cosh Bk, sin Bky=k, cos Bk, sinh Bk, ]
-2 K2 K, [cosh(B=1) Kk, sin(B=1) K, + cosh Kk, sin K]
+2K; KzZ[sinh(B~1) Kk, cos(B=1) Ky +sinh Kk, cos K, " (29)
+k,2 [« K, sinh Bk, sin Ky sin(B=1) Ky +
+ Kp sin BKy cosh «k; cosh(B-1)k,]

+ Ky2 = K sinh BK, cos Kz cos(B=l) Ky =

~ Ky sin BK, sinh K, sinh(B—l)K1]}=O_’
. In case the stiffener lies in the middle (B = 2),
the left-hand side of the buckling condition may be reduced
to the product of two factors:

.

'{Ka sinh K, cos Ky - K; cosh K, sin K, }X

X{"‘l”a (k.2 +K,®)(k, sinh Kk, cos Kp+ Ky cosh K, sin k) (30)

1

+ @, [k, Ky(l~cosh K; cos Hé)# v® ginh K, sin Kg]} =0
so that two buckling conditions are formed which are inde-
prendent of each other.
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l. The buckllng condition which is formed by put-
ting the first factor in (30) equal to zero:

Kz sinh K; cos Ky -~ K, cosh Ky sin K2 =0 (31)

ig independent of @, and agrees with the buckling
condition for a nlate of the width ©b/2, whose one lon-
gitudinal border is hinged, the other one being fixed
(reference 8). The corresponding buckling form con-
tains therefore a nodal line at the stiffener. The nod-
al line is identical with hinged mounting of the plate
at the same point (antisymmetrical buckling with respect
to the axis 1N = 1).

2. By placing the second factor in (30) equal to.
zero, the dbuckling condition

*\
Ky, Ky (k32 + k%) (K; sinh ®; cos Ky +
+ Ky cosh K, sin Ky) +
S (32)
+ &, [k, &, (1 = cosh Kk, cos kp) +
+ v2 ginh K, sin Kp] =0
—

is formed, which gives the buckling stresses of plate
and stiffener (gymmetrical buckling with respect to the
axig M = 1). To the limiting case &, .= O corresponds
the nonstiffened plate fixed at the borders TN = 0 and
N = 23 the corresponding dbuckling condition becomes:

K, sinh K; cos Kz + Ky cosh K, sin K =0 (33)

from equation (32), reference 8.

In figure 8 the buckling values k are plotted
against the ratio a« A comparison with the correspond-
ing buckling curves for hinged longitudinal borders shows
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(reference 14) that the antisymmetrical duckling form
with built-in borders is already determining for consid-
erably smaller values of Y than for hinged longitudinal
borders (reference 19).

4o Plate with two longitudinal stiffeners:

a) General buckline condition.~ The investigation
of the rectangular plate with %two longitudinal stiffeners
r = 3) is limited to the case of all four borders hinged.

We have
TO=T = 0, 'Yo='Y = oo
and therefore,

\yo::\_ljsr:o, (Doz @3:0{:



so that the boundary conditions

to

Y1=0:
Yy =o,

(")
(8")

Y3=Os
Yy=o0
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a b ¢ d e I \Ii
GL A4, B, C, D, Ay B,
1| 9 1 1 ' i
2| ) . — !
3] (x2) Ginsx, Cofx, sin x, COS %, — Ginzxy —Gojx, |
- |
4| (14" %] Gin, %3 ©of %, —— %3 sin s, — x§ COS %, —x} Sinxy —xiCofx, !
51 (139 %, €of 2, %, .Gin % %5 COS g — 3 Sin %, A EA — %, Ginz,
, —x3Gofx, | —u} Sinxg | 2§ COSxy — 3§ sin x, . 5
61 (15) | L @, Ginw, | + ®,Cofxn, | + Pysinky | + Py cosx + } Gof + ¢} Ginxy \
i [ Sin i}:‘_ﬁ_xl of 22 : b
1 . 1
8| (14) i Gin 2t 2@of 210
by b,
9] (13) %, Cof bkl o1 %, Gin btb % »
| bl- bl II
= |
| g bl | gein Bty
1o} (15) 1 1
+ ¢,c5inl“+"’x1 + &,Cof ”12' b
1 1
|
x| (z17) :
12 | (10"}

(8') to (11%) simplify

The transitional conditions between the fields 1 and 2
are the same as for the plate with one stiffener (tadble
1); corresponding equations are obtained for stiffener 2.
The 4 boundary and 2X4 transitional conditions form,
with the solutions:

W = Yl sin ‘Vf,

2 2
3 3

the deanominator determinant,

the following:

3

determinant becomes

(o} -+ 3)

The subdeterminant
the lines 11 and 12,

L2l e 0 @in Ly, sin 2
b a —(x1+x2)<6m porasing-%a|
b . b 11, 12
—-@:oib—]fclsm—b»:xz P

3

1,2
b, dl’

1,2
b,d

VII, 12| . b
— ©in +—2; COS %,
b, b,

3

8 3

Vi = A &ian,n+ B1Cojxyn + Cisinngn + Dicosxyn
2 2 2 2 2

shown in table 3, from
which the buckling condition 1s obdtained by putting 1t
equal to zero.

The solution of the determinant is briefly given in

b b
+ @Df—b:’ﬁ c0S 3%

(34)

b 11, I2

i, m

11, 12
k, m

).

After eliminating the lines 1 and 2, the

becomes, after elimination of

(33)
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i g h 1 k 4 m
Cs I D, 4y | - B Gy - - .Dy
—-sin — COS 2y
+gsinmg + %} coS %,
~— ¥y COS %4 4 %4 siﬁx.
— %3 COS %, + 3 sin s,
bitb bt | b +b - bi+b +b
sin bl;_b. %y cos b1"l;b| %y |—Sin——— b1+ by %, —Gof%xl —sm%x’ — cos I{;bl 2 %
1
. b+ b b, 4 b.
—2j > sin +b' —x}cosb1+ L —x}Sinb‘-b'_'b'x,‘ —-—x,(iolbl_'_b’ % +%§'Sm%x.+x§-cos 1-1: 1,
b, 1
b . b+ b
x'coskl—;-—b’"’ _"’Sinbl_—l::’b!“ — Gof =5 bl+ Yooy | — Ginbl_lzb.’ﬁ -—a‘e.cos—bl-b'-1 Yy +x.'sm—l—bt Y1y
b ‘*‘ba b+ by,
+fcos 21 -2 ~—a3-sin 1T 78 , . \
" b, blb +"'¢°fb1+b’ +4¢°6mb1+b’ —xg'cosbl;,'_ 1y +4¢8-smb1'ib_1 LI
+¢:Slnbl-;; 32y | + Pycos LT 2 1+ 2 A
1
: b
Sin — 2% Co[in, sin Lu, CO8 ——x
b1 by b, b,
b
’Gini %} Cof II: %y — 33 sin Zl — 33 cos—bTx,

Since the lines 11 and 12 are independent of the lines
3 toe 6, the four B8-line subdeterminants in (35) with
ra= 1,k and 8 = V,m (r3 s) may be written, after
eliminating first the lines 3 and 4 asg

12,11, 121 — (xf-l-"s)[ 6inxlsinx-,( 3"4 3’_4) +

b d, or, a, ¢ e g L
+ Ginx; cosax, (,3 I hl) +@'of’¢151nx,( H— g,)-i-@ofxlcosx, 3 4”

The nine subdeterminants eacurring in this equation be-
come, after eliminating the lines 5 and 6,

(36)

2' o= %% (4 +4) (—- @Dfxlcosu,|5’ ,_@Di’ﬁsmng' 6| +
+ 6mnlcosx,lf I+ Sinsey smx,lf hl)
a, gI =% (of +23) (@oixlcosx,l l — Ginx, cosxg | ZI)

1)

+ D, (xlﬁsoiaﬁsmx,ls’ I—xl 6mxlsmx,|5’ l—x,sm x,ls'

4 = %, % (x’ +,‘2) (@oixlcosx,' I+ @of"lsnrx"s' hl

5, 6
+ d>1(x1©in’xlli: f‘|—_x,©mx1 cosn,li: g|—7_¢, @mxlsmx,li’ h’)'
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’ +

2' 4 = 2y 25 (2 - 22) Cofy cosx, ’
—I—(Dl(—x,@mxlcosx2|5’ |+x1(€ofxlsmx2 gl)

. 76 . 5, 6
+ @, (xI(Soixl sin xz'f, .g| —ngtnxlcosxzyi ¢ ),

56
f, 2 = 2, %, (265 -+ #§) (Soixlcosx2|?’ h’ +
+ @, (—;;2 Sin sy cosx, ; :‘ + 2, €of 2, - sinx, ‘5. D

i)

2:; = 2, % (%% + }) ((Soixlcosle hl_ @mxlcosxglf h‘)
; +¢4h&WﬁmW4iA—m@m%mmz !+mﬁmmme
3 4] — sty (48 - ) Gl cos 34 58+
+ By (— g @in cosny [ h[ + 7, Cof oy sin g | > 56 ),
78] =+ ) (G0t cosm 7 8|+ G sinma 3 1) + .
oSt S 6 S
i_:i = 2y g (8 - 52) Cof ¢, cOS %, iﬂ +

Substituting these terms in the subdéterminant (36), we

obtain, after arranging the equation:

s 40, 56‘+

1, 2, II, 12
a, ¢ |, h

b,d, r, s

= 08+ ) o 08 + )2

: 34 5 6 1
+d)1(—x_lsm2n2 ot g‘+xz©mxlsmx2\a o g h

. : 5, 3, 45
+2, Ginxy sinx, 2 t . fl+" Sinto |, ¢ h’+
3,450

-} 2, sin %, cos xzig’ t f, h‘—"z@m"l@"i’ﬁla, &tk

3: 41 5' ’_’_

))

The eelculation of the subdeterminants of fourth order
on the right-hand side gives, for the various values of

r and 8, the following equations:

=i, s=1I:
Z’ ‘: ‘2’ (f; ——xz(xl+x2)¢2@ofb1+ 2 2 cosbl+ 2 3,
» 4 5 6 b, +b
3 = T (e o) P Cofr S
r 45 16 b +b
B S O| nf) Dycost i,
6
, h

= (i} + #3) [ 2y %9 (x} + 23) +

Z——%l(x”—%-xz) D, Cof b‘+b’%1cos b‘;: L%,
r=1, s=m:

6

f

= — 2y (6 + #) P Cof 2 e sin Dl

+¢2<x2@m ‘+b’x Co fb1+b’x1 %, sin 1+b’x2cosb1+b’x2>]
l
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34 5 6 : . - b+ b . b+ b
a ¢ i' h|=""/-2(z§+3§) D, Coj 1-11;1 % %, sin ‘Z; L 3x,,

N A 6| =+ (o +23) [" g (] +43) +

a, c, [, g
+ D, (—-/zvm ‘;'b’x Co]b‘+b’x1 xlsmb‘;' 'x cosb'+ ’x,)]
1

?

a, ¢, f, k

3 4 5 6
a, c, g h

I3 4.5 l——xl(r’ x’)¢,sxn’b‘+b’ #y

=0;
r==Fk s=I:

34, 5
a, c, e’

6
f
» 4,5 6 !
2. :. i, pl| = 08 + o) ey 2ep (o} + x3) +
+(D2(x2§in bl+b’3ﬁ(§0f bl+b’7¢1+x15inb‘+b’ %4 COS by + by x’)
5 b b, b, ’

nbl+b’

= — %, (xf + #3) P, Si

b +b
%3 COS = lbl 2 X%,

‘13, 4, 5, 6!
a, ¢ f, gi""o
4.5 6 b
R e R XL
345 0= cin1tt by+by .
‘a. c, g k|~ xl(x§+x§)¢2c-:ln lbl ”‘1005 lbl ’x,,
r=k, S=m:
* 3:4'5:6__ . by L b, . b+b
a, c e f| % (2] + x3) Py Gin lbl 2 3, sin lb1 S x,,
3.4 5 6 o b4b
a, : i = + 7 (2% + x}) Dy sin? ‘;: 2 %y,
m . b +b
a ¢ [ g~ — %3 (6} + #3) P, @m’Lbl__'xh
456
a, c [,k =0,
» 5 6 +b b, + b
2 2 :: hl_ xl(""‘l“‘";)d)g@m l ’xlsln ‘-'; ﬂx’

Substituting these subdeterminants in the four terms
(27) and those again in (35) and (34), respectively,
the following general buckling condition is obtained
after multiplying out and arranging the corresponding
terms by _ :
. w

0 + 5t (—*i2d (4 + ) Gin 5y sin 5
2y % (3 + d) {a)l(—x,@in_”-x;sinx,sin ”';,‘:”' %y +

+ x4 smix, Ginx, Sin 25— by +b’ xl) _

+ @, (— 7 Gin - sin +’x 2 sin g2 %, + xysin 5 "sg'“b'+b'”1©'“bx‘)] (38)

+ @, D, { Gmb xlsmx,sm%—x,snn Xy
—xgsm—x,_@m:ﬁ@m xICm—

+ 2y %5 [smx, @m (Cm by ";b' %, sin by '*; by %y — Sins sin :_: %y

+cx1:—( bbb, in it B, — sinsg Sin2)[) = o.
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placing this determinant egqual to zero.

b) Two _stiffeners, being symmetrical to the center
line N = b/2by, with egqual dimengiong.~ For two stiffens
ers being symmetrical to the middle TN=b/2b; with equal
cross sections and moments of inertia, @1 becomes

@1 = @2, and. bs = bl

so that the left-hand side of. the buckling condition (38)

can be simplified with these values and can be written as

a product of two factors., With ©b/b, = B, the duckling
condition becomes

‘{f* K Ky (6,8 + K,®) sinh BK, sin BKg h

+ ®, [- Kk, sinh BK; sin Kp sin (B = 1) Kp +

+ Ky sin B Kz sinh K; sinh (B - 1) Kl]}

) \ (39)
X {K1Ka (k,2 + Kz2) cosh BK,; cos Bkp

+ 0, [k, cosh B K, sin K, cos(p - 1)y = .

- Ky COS B Ky sinh K, cogh(B - 1) K;J} = 0 3

Since each factor, placed equal to gero, satisfies the
equation, we get

1l = KyKky (K2 + Kp2) sinh BK,; sin BKp
+ @ ‘[= K, sinh B K; sin Kp sin (B=1l) Kp+ (40)
+ Ky sin B Ky sinh Ky sinh (B-1) Ky J= 0

This bucklling condition agrees with one for a plate of the
width b/2, hinged at the longitudinal borders, which is
stiffened by a longitudinal stiffener at a distance N = 1.
(See buckling condition (19), p. 14.) At the point 1 =
B/2, therefore, the boundary conditions for hinged mount-
ing are satisfied. Thus the bdbuckling form for our case
with two stiffeners in the middle of the plate contains a
nodal line., The buckling condition (40) therefore gives
the buckling stresses for bduckling antisymmetrical to the
center line TN = B/2.
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2+« The buckling condition:

Ky (8,2 + Kéz)rcosﬁ 8 Kl‘coé B Ky
+ &, [k, cosh B Kk, sin Kz cos (B = 1) Kk, =~ (41)
- Ky cos B Ky sinh k, cosh (B = 1) K,] =0

contains the buckling stresses for buckling symmetrical
to the center line 1 = g/2.

l. Two longitudinal stiffeners at equal distances.-
For two longitudinal stiffeners with equal dimensions and
equal distances (b, = by = by = b/3) the duckling condi-
tions (40) and (41), after being split up into factors,
ehange into

K K
sinh = gin -2 [— {2 + Kg?3 +

2 2
+ @1( sinh K, . - sin K, . -0 (42)
6, (5+4 sinn? —23-> iy (3-4 sin® 5f)
cosh %% cos %f[;~ (K, + Ky2) +
sinh K, | sin Ky \]-_- 0 (43)

+ @1( m - ( >
2 hy ) a2 a2, )}
Ky (4 cosh =5 '3) Ko \4 Cod" —5F =3

or, if again equating each factor to Z6TO0, Whgreby the fac-

tors sinh %?‘ and cosh it are omitted, since they can-

2
not approach gzero, according to assumption:

. Ka _ ) \-
sin -% = 0 (44) (

antl-

R G B : S

| : : . \ , met-
o sinh K in K : . rical
+ Q) — b —— 2 Beire =0 (45) | buck-
. n1<:3+4 sinh? ~21> Ko (z-z;_ sin® -_23) : ling)

J
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-

K

:c05'2f = 0 ' (46)
(sym~
, . met-~
"(ng"" ke®) + > rical
. - . bucke-
+ @l sinh Kl - sin Kg =0 (4?) lina_,')
K K .
2 1 . a 2 ., >
n1<4 cosh 5 3) H2<4_00s 5 3 J
To the solutions of (44)
K .
'—'2‘2" = 1T, 21, BT sees
which are independent of ®,, correspond the antisymmetri-

cal dbuckling forms with nodal lines at the longitudinal
stiffeners, The buckling stresses corresponding to the
first value K, = 21w are

4 N2 .
k = 36 (%% + EL) Minima: k = 144 for %% =1

The buckling form has 6 half-waves in TN-direction (fig. 9,
Ia). To the following solutions of K correspond buck-

ling forms with multiples of 6 half-waves. Those values
are higher buckling stresses which cannot be taken into
account for this calculation.

To the solutions of (46)

g 5w

2 , =2
’ 2 2

___TT
T2

mols

correspond the symmetrical buckling forms with nodal lines
at the longitudinal stiffeners, The duckling stresses of
the first value are

[V\]

2
k =9 (22 4 EL\ Minima: %k = 36 for 2% =1
m B/ m

The buckling form has 3 halfewoves in TN-direction (fig.'9,
Ila)s The following solutions of X, also give higher
buckling stresses, since to them correspond bdbuckling forms
with multiples of 3 half-waves. The ecquations (45) angd
(47) give the buckling stresses for the duckling forms sym—
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metrical and antisymmetrical to the axis = B/2, at
which the plate buckles with the stiffeners (fig. 9, Ib
and IIb).

In figure 10 the -buckling stresses for Y = 5 and 10
are plotted against the ratio «. For small ratios (a <
=~ 0e4) the buckling condition (46) gives the smallest
buckling stresses, for great ratios the buckling values
have to be calculated from (47). Besides that, for small
values of Y (in fig. 10, for Y =5) at ratios o = 0.4
to 0.7 the antisymmetrical buckling is calculated from (45).

Timoshenko calculated approximate values for this case
using the energy method and put them together in a table
(reference 20), but the table is set up only for the sym—
metrical buckllne cases according to (46) and (47), not for

the antisymmetrical buckling form from (45). Several nu-
merical values in the table are therefore too great. For a
comparison in figure 10, the curves for Y =5 and Y =

10, respectively, and 6 = 0.1, which correspond to Timo=-
shenko's values, are shown as dotted lines, The values of
the approximate solution are slightly greater than the ex-
act values from (47); however, with increasing ratio o,
the differcnces become smaller, The solutions by Lokshin
(reference 13) are also incomplete ag they only consider
symmetrical buckling,

2. Stiffeners at small distances symmetrical to_the
center lino.-~ With welded structures the case may occur
where one longitudinal stiffener is split up in two, each
half being on a different side of the plate but both at a
small distance from each other (fig. 11), in order to avoid
lapping of the welding seams. The bduckling stresses can be
calculated from (40) and (41) if both halves of the stiff-
ener are symmetrical to the middle. Since b, is small
against b Dy hypothesis, the buckling stresses for anti-
symmetrical buckling (fig. 11,I) increase as b, increascs

for, in the limiting cases b, = 0, the plate buckles like

the nonstiffencd plate with a nodal linp, whereas at an ec=
centricity b, also the stiffeners are bent and therefore
the res1stance again t buckling is greater. -The dbuckling
stresses therefore remain on the safe side.if those of the

limitineg case ba = 0 are used., However, the buckling

stresses for symmetrical buckling (fig. 11, II) decrease as
b, increases. ¥For the example of the plate with the ratio

"o = 1y and the stiffener with Y = 2.5 (8 = 0), the buck-

ling values are, from (41)
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be/b | O | 0.05] 0.10| 0,15
x | 11,06 | 11.06 | 11.05 | 11,00

The differences between the k values are small, so that
if no greater eccentricities are in question, the buckling
values of the limiting case b, = O can be used.

III. PLATE WITH TRANSVERSAL STIFFENERS

1. General principles.- The rectangular plate with
transversal stiffeners at the points x = a,, X = a,; *+

g e.s (fig. 12) consists of r plate fields with the ra-
tios '

(o0 = % = ratio of the whole plate).
With the notations
t = %, n = %, Ox = = ® Og (ge = %g% = Fuler stress)

the deflections w of the center cross section of each
plate field i, on account of the compression stresscs at
the transversal borders ¢ =0 and ¢ = a, satisfy the
differential equation (2), in which the wvalue @, is to
be renlaced dy o, according to the notations mentioned
above.

Assuming hinged (w = Aw = 0) longitudinal borders
T =0 and 7N =1, the differential equation (2) in cach
field 1 1is gatisfiecd by

wy = X3(&) sinng v N (n3y =1,2,3 ves) . (48)

by which the bending area in T-direction is assumed to
have sine shape. The function X3, only dependent on ¢,

is obtained from the common differential equation

ng + (m2p - Enia m2) X' o+ ni4 m X, =0 (49)
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-the generwl solution of whidh is-

xi-Ai sin Eik +Bi cos ﬁik +Gi gin glxa+Di cos Eihap  (50)

with (~/¢ x J/p = 4ny (p > 4n;?)

Since for every field according to (48) there exists a
sine-shaped (in T~direction) bending area, the number of
half-waves in M-direction must be the same in all fields
(ny = n) because of the steady comnnection of two adjoine-

ing fields. Of all values n the minimum values of the
buckling stresses correspond to n = 1; therefore, the
following general deviations are calculated with n = 1,
With the aid of *“he four boundary conditions at the borders
¢t =0 and ¢t = o and the 4(r - 1) transitional condi-
tions at the (r = 1) stiffener we can set up 4r homo-
geneous equatlions, from which the buckling condition, and
from that the buoLllna stresses o} = k 09 can be calcu-
latho

2. Boundary sad trangitional conditions.-~ At the bor=-

ders ¢ =0 and ¢ = ¢, rigid and hinged mounting is as-
sumed; therefore, for ¢ = O
7wy, =0 (51)
, bw, =0 (52)
and for t= o .
w, = 0 (53)
Awp =0 _(54)

At each stiffener i, i.ee, fOr £ = a; + Qg + eee *+
a; [1 =1 to (r - 1)], +the following transitional con-
ditions must be satisfied:

1. The geometrical conditions for steadiness require

Wi o= Wivy | (55)
ovy _ OWsi4,
St = TS¢ (56)
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2. Weglecting the torsional stiffness of the stiffen-

ers, the bending moments me¢ of adjoining platé fields 1
and 1 + 1 at the stiffener i are equal, l.c.

2 2 i 2 .
. D (9 Wi S Wi> D a W~+1 - d Wi+a
- e¥i L .82 2 . + gt (57a)
- aga e oE ag | e )

Since on account of the steady connection the curvatures in
TN-direction at the stiffener mugt be equal, i.e.,

2 2
O Wi _ 9 Vin (571)
an® an?
quatlon (57a) changes into
3° R aawi+1 :
- i 57
T St (57)

2. Considering $the plate fields 1 and 1 + 1 as
cut off along the stiffener i, the transversal loading

- of the stiffener must be put equal to the difference of

the reaction forces of the two plate fields, at which the
defloctions of the stiffencr must be assumed to be equal
to the deflections i or i + 1 at the point ¢ = a; +

g + oes + @5. Denoting the moment of inertia of the stiff-
ener about the f-axis by J3, we have the equation:

84Wi o raswi 3 W,
¥ an ¥ L ot agan
. _
O Wity 3 W1-?-1]
______ - 2_. RS YLy 58-:
548 (2=p) SEane (58a)
EJ
or with 3;— = Y; and, considering (56) and (571)
4 3 3 '
o wy _ o w3 3 Wiy
Y1 an4 = ags - ags (58)

After substituting the solutions
wy = X3 sin m n

in the boundary and transitional conditions, we obtain the
following equations, only dependent on the variable ¢,
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for determining the constants in the functions X4

=9l too 1)
=0 g for t=0 (521)
X. =0 531
ﬁ: } for ¢ = a (" )
X, =0 T (541)
Xi - Xi+1 =0 (5571)
X.' - X. =0 (561)

ﬁ: i*l >,for £ = Ay FOpFe .oty

t H1

~ Xg + Xg4qy + Y3 M4 Xy =0 (581)

-t

3., DPlate with one transversal stiffener:

a) Buckling condition.- For the plate with one trans-
versal stiffener (r = 2) eight homoseneous equations, ac—
cording to (51!') to (58!), arise from the solutions of
fields 1 and 2,

w, =X sinw M, X, =4, sin A\t +
E) 2 2 2

+ B, cos At + C
2]

£

1 Sin Agt + D1 COS Apt
2 2

. Al

the coefficients of which are given in table 4., This dew-
nonminator determinant is solved as for a longltudinal
stiffener; therefore we omit the whole process of solution
for table 4. The result of the solution glves the bduck-
ling condition for the uniformly compressed plate with one
transversal stiffener:

(A% =.22%) AApsin a A; sin an,
+ ¥ % (=~ Ay sin o A, sin oy Ay sin ap At o (89)
+ Ay sin a A, sin a,A; sin &axl) =0

The buckling conditions for infinite stiffness 7Y,
i.e., for kxnife-edge mounting at the stiffener, result
from (59) by placing the factor ¥ equal to 0. The buck-
ling 'condition is
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- A; sin a Ay sin a3 Ap sin ag Ap +
' (80)

+ Ap sin a Ap sin oA, sin oA, =0
Buckling conditions (59) and (60) are, regardless of
the position of the stiffener and the magnitude of the
stiffness Y, satisfied, if at the same time
sin o A, = O, sin o A5 = O
or
0,1,2,3 ..n)

it

& A, = my T (m,

0,1,2,3 eea)

1

o Az = mg T (mg

The corresponding ratios a and buckling stresses are ob-
tained from

They are

The case m, or mp equal to zgero cancels, as we
would get @ =0 and k = . With m; = m, = 1,2,3 ...
o becomes

a =1,2,3 .. and k = 4

Thig case also has to0o be excluded since by hypothesis

k > 4, The values k = 4 for the ratios o =1,2,3 ...
are the buckling values of the hinged, nonstiffened plate
where the buckling form consists of square buckles. It is
evident that with one transversal stiffener present, the
buckling values, on account of the greater resistance, gen-
erally must be greater than the ones of the nonstiffened
plate., Only for the speccial case, where the stiffener co-
incides with & nodal line of the buckling form of the non-
stiffened plate, the solution m, = m, with k =4 |is

valid also for the stiffened plate.

The other values o, ¥ with m,, mp = 1,2,3 ... (m, #
mp) have a simple significance for the nonstiffened plate.
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- Table 4
a b c d e f 4 - A
Gl A, By G D, 4, B, C, D,
(51) 1 1 |
2| (52) i 1
31 (55") sin a, A, cosay A sin o, 4, cos oy Ay —sine 4, —cosay 4 —sinecl),,‘ .——cois.m_li., |
4| (57) | —Msinoy 4, | — A2 -cosoy 4 — Msina, 4, — M -cosa A + Msing, 4 + A2cosoy 4 + 23 sin a; A4 -}-i{-gos.a,.ﬂ.,'
sl 560 | mcosmd | — Asing 4 heosaly | —lpsingdy | —hcosmd | +hsinad | —Acosyly | + hsineg i
6| (58 +€I°":fs°.‘ulli!l o f;Si:oglaflzl N ':i u 2 A +_yl’1i sn o a:’z, —Mcosaydy | + Msineyd | —Mcosoydy | + A an a4
; (53') sin o 4y cosea Ay sm LN (_:os.: « )., v
81 (54) —Nsinald | —Acosad | —Asinal,

~—Mcosal,

P06 °Of WOPUSIONSN TEOTWWOINE Y O°Y°A

Ty
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Plotting the buckling values k as functions of the ratio
a, the points a, kK agree with the coordinates of the
intersections of the buckling curves k = k(a) for the
nongtiffened plate which bucklces in longitudinal direction
with m, and m, half-waves, as is obvious from equation

2 , 2
k = (-9"—+E-l> = <§°~+E§>
1y a o a

The result may be summed up in the following sentence?
At the pointe of intersection of the buckling curves for
the nonstiffened plate for m, and m, half-waves in

longitudinal direction (m,, m, = 1,2,3 ..a3 my, # my),
the dbuckling condition of the plate, stiffened by one trans-

versal stiffenor at any place and with any stiffness Y
(also with Y = ®) 4is at the same time satisfied.

For the restriction, ratio al/ae being a real frac-
tion, we can place
a, =r {, a, = 8
in which r, ¢ and u =r + 8 are positive integers.

With the notations

o T M v e
the buckling condition (59) becomes
(A2 = 2.%) Ay A sin uw Ay!' sin uw a,!
+ Y (= n; sin u A" sin v A sin s A"+ (61)
+Ag sin uw A" sin rA,' sin s A, =0 |

Each term on the left-hand side contains the common factors
sin A,'" and sin A,', so that (61) may be split up into

sin A,' = O, sin A,' = 0 (62)

and
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sin u A% sin u Ag'

2 2
A7 = Re™) Mada TEITRLT Tein ng!

. ¥ e [~ Ay sin up,' sin r Ap' sin s Ag!

4+ 63
sin A;'! gin Ap'! >(63)

+ Ag

ein u Ap' sin v A,' sin s Xl'] -0
sin Ag' sin A,

-

The quotients in the last equation are relatedvterms.

The buckling conditions (62) which are independent of
Y, are satisfied for A,' = Ag' =m, 27, 3W,e0e M T ...

The corresponding buckling values are, both for Al' and
ha : .
Gim-;-.—-) (m = 1,2,3 o0.)
f bm

since { = 3% = 32, 4ne fields 1 and 2 buckle like plates

hinged at the four borders with mr and mns half-waves
in longitudinal direction, so that the entire plate buck~
les with m(r + s) half-waves and has a nodal line at the

stiffener. According to buckling condition (63) plate and
stiffener buckle at the same time.

.b) Examples:

1. Transversal stiffener at a distance ay, = a/3

o) Buckling stresses (including the higher ones) for
the sgquare plate.- For the example of the square plate
with one transversal stiffener at one~third of the length
a the buckling stresses from (62) and (63) are plotted

against 'Y in figure 13, In the buckling conditions we
have to place
' ¢ _

'r=l,.'s=2, :B'—-;g

The points of interscction of the curves (63) with
the k-axis are at the same time the buckling stresses of

the nonstiffened plate (Y = 0); the corresponding buck-
ling wvalues are: S
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= 4 (buckling form. 1 na1f~wave in- longitudinal
' direction)

k = 6425 (buckling form: 2 half-waves in longitudinal
direction) . :

w
il

18,06 (buckling form: 4 half-waves in longltudlnal
direction)

With increasing Y, the buckling stress k = 4 (Y =
0) goes up first and approaches then asymptotically the
value k = 5,795, to which corresponds accordingly a
stiffener with infinite stiffness. With k = 5,795, we
have reached the greatest, in practical cases occurring,
buckling value; the curves above contain higher buckling
stresses., To the values 5.795 < k< 6,5 correspond neg-
ative values Y. These buckling stresses are without phys-—
ical significance since there are only positive ratios be-
tween bending stiffnesses of the stiffener and plate. From
(64) we obtain the further solutions:

Ali = ?\2' = T, 2'”0.. With k am + g;}‘ (m = 1,2.. )
The mininmum value occurs for m = 1 and is k = _80 =

11,11 .... At this value the plate dbuckles with 3 half-
waves in §f-direction with a node at the stiffener.

B) Buckling stresses devending on the ratio a.- In
figure 14 the buckling values are plotted as functions of
o for the case of one transversal stiffener at a/3. The
buckling conditions (62) and (63) are for this case

¢4

sin g A = sin 7 Xy = 0 (64)

(ANZ=23)N1 Ap (4- cos? & >\1-1> (4 cos? ¥ >\2-1>
3

+ Y n4l-— A (4 cos? % A1~1> sin 2% Ag + \. (65)

+ Ap (4 cos? % A8~l> sin %% Al] = 0

The buckling values

3m a ¥
- = 4+ = 1,2 o0
k fo? 3m> (m ! )
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. from (64), which are independent of ¥, are those of the
nonstiffened plate with 3,. 6, 9 ... half-waves in longi-
tudinal direction, so that a nodal line occurs at the
stiffener.

The solutions of the equation (65) give curves that
are calculated for Y = 0.5, 1,0, and , and plotted in
figure 14. These curves coming from infinity with a = 0
have a wave-shaped course and approach - not mentioning
those for higher buckling stresses - with increasing ratio
o asymptotically the minimum value of the buckling stresse—
es k = 4,

For the ratios o =3, 6,9 ... and those in the imme-
diate neighborhood, the, buckling condition (64) gives the
smallest buckling stresses.

The initial and end points of the sections, within
which according to (64) lie the smaller dbuckling values,
are'given by the intersections of the curves for (64) with
those for (65), the magnitude of these sections being de-
rendent on the magnitude of the gtiffness Y. The sections
are smallest for Y = 0; +the corresponding ratios « then
lie within the limits

J(Bn - 1) Bu <a < ./3n (3m + 1)

(For m = 1, o is 2.450 < 0 < 3,464.) The sections become
larger with increasing Y and reach their maxima for Y =
w. (For m =1, we get 2,12 < o < 3,68.)

Buckling condition (65) is satisfied independently of
Y, if at the same time

4 cos?® % Ay - 1

12
>
1]
{
o]
1}
O

0 and 4 cos? %
or o ‘

cos %.)1 = &

o=
AV] (od

and cos % A= &

S0 that

%A, = %A, =T, 2m, 4m 5w 7w 8w
FMo=g R =g F s s g o

Theée,values are reached at'the'intersecﬁions of the buck-
ling curves for m; and mp half-waves of the nonstiff-

ened plate (a,_,/ml,ma, k¥ = T e

1, 2, 4, 5, 7, 8 4eu (my 4 my).

with m,, mg =
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As figure 14 shows, the curves (65), depending on Y,
touch each other at the intersectiong of the buckling
curves for 1 and 2, 2 and 4, 4 and 5, etc. half-waves of
the nonstiffened plate, so that in these points the buck-
ling values k are equal to those of the nonstiffened
plate for any value of the stiffness Y.

From table 5 the exact buckling values k for the ra—
tios a,/a = 1/3 and a,/a = 1/4 may be taken,

L ____ Table 5
a,/a Y &
0.4 0.6 1.0 1.4 1.8
5 11.265 8,703 5.694 4,519 4,317
1/3 | 10 13,768 10.085 5,748 4,519 4,326
15 15.840 10.741 5.764 4,519 4,329
5 10.287 7,474 5,317 4,515 4,458
1/4 | 10 11.907 8.655 5.402 4,516 4,472
15 13.210 9.226 5.429 4,516 44477

2, Transversal stiffenecr in the middle of the plate.-
For a transversal stiffener in the niddle of the plate
(a, = a5 = a/2) the buckling conditions (62) and (63)
change into

. O . .
sin 5 Ay = sin 5 Ay =0 (66)
and
2(NZ=N3%)A Ny cos & A, cos % Ag + Y me
- (67)
Ln A, sin % Ay coOs % Ay, + Ay sin % Ay cOS % Ay | = OJ
The buckling values from (66)
2
K = <§a + 2m) (m =1, 2, 3 vu.)
m a

are those of the nonstiffened plate with one nodal line in
the middle, The corresponding buckling form therefore is
antisymmetrical to the center line ¢ = aof2. Buckling con-
dition (67) which is also contained in Lokshin's solutions
(reference 13) gives the bucklineg values for the buckling
form which is symmetrical to the center line ¢ = a/2., The
required mininum stiffnesses were calculated by Timoshenko
(reference 2) with the energy method.
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4. Plate with two trangversal stiffeners - .
a) General buckling condition.- For the plate
with two transversal stiffeners the 12 equations in table
-6-are developed. from the deflections w of the plate
field 1 to 3 with the aid of the boundary and transi-
tional conditions (51!') to (58%t). The solution of the
denominator determinant gives the following general
buckling condition of thée hinged rectangular plate with
two transversal stiffeners: ' o
1272 (22 — 22)%sina Ay sina iy
+ 8 Ny Ap (A3 — 22) {3y |4y sin 4y sin oy Ay sin (2 + %5) 4,
— lysina Zy sin oy 4; sin (oy + o3) 4]
+ o[, sin a2y sin (@) + o) Ay sinog 2y
— Xpsina Ay sin (o + ap) 4 - sinag 4]}
+ a8y ya{A¥sina Ay sin oy Ay - sin @y Ay sinaz 2, (68)
—+ 22 sin otdy sin oy Ay Sin o Ay sin oz 2y
~+ Ay Ag [sin oy 4y sinog Ay (sin oy 2, sin oy &) —
— sin (ot; + otg) Ay sin (oty + 23) 4y)
-+ sin & Ay sin ag A, (sin oty 4, sin oeg Ay —
— sin (ot; =+ &) 4 sin (@ + o5) 25)]} = 0.
b) Two trangversal stiffenerg, symmeirigal to the
center 1ine { = /2, with equal dimensiong.- The buck-

ling condition (68), with stiffeners placed symmetric-
ally

Y, = Yp=7Y and a, =a,, a, = G,

simplifies to

[(;.g ) R dgsinE Aysin LAyt yah (= Aysin T Aysinay dpsin 22
+ Aysin L Aysin @y &y sin 3 ;.,)] - [(zg — 1) Iy dycos % Ay cos = Ay (69)

. - o d : % 9 V| —
+ ym(— }.lcos—gllsmal/.zcosflz—l— lzcos?lzsmalllcos—; 21)] =o0.

From this we obtain two different buckling conditlions
by placing each of the two factors equal to szero.

1. The first buckling condition

(32 — 13) M Agsin = 4 sin >,

+ yn"(—- llsiniz—llsinal'lzsin% 1+ lzsinglzsinalhsin% ll) =0 l
agreeg with the one ror the plate with one transversal
stiffener at the point ¢ = a, (see equation (58))
where the border of the plate ¢ = a 1in (59) corresponds
to the center of the plate ¢ = af2 in (70). Since
buckling condition (59) is dbased on hinged plate dborders,
the buekling form from (70) contains one nodal line in
the center of the plate, so that the antlsymmetrical
buckling forms correspond to buekling condition (70).

2, The second factor in (69) gives the bueckling
condition

(12— ) le,cos%llcos—:—)., ‘

- (70)

, . s 7 (71)
+y:'t‘(—llcos%llsinallzcos%'l,-’{-lzcos%lzsmalllcos%ll)=o I

with the buckling stresses for buckling forms symmetri-
cal to the center line ¢ = af2.

rd
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a. b c d e
GL A, B, C, D A, By
1} (51%) I I o
2| 521 | » T
31 (55) sin ay 4, cos oy A sin a; 4y COoS oy Ay —sina, 4, —cosa 4,
—4 (57)) | — A%sinoy 4, | — Ajcos oy A | —Ajsiney A4 | —Ajcosay As + Atsiney 4, + A3 cos ;i
5“ (56" | Acosoqdy | — Aysinoy 4, | A;cos oy Ay | — Agsineay 4, — M cos iy Ay + A sinay 4 l
| 31 | i | o Eeconiay | tetmb |+ Hud
71 (55) sin (o, + o) 4 cos (o + ag) 4
8 (57') — 2%sin (o + @) 4| — A3 cos (e + o)y
(56" Ay cOS (ot + og) I —h sin {0, + ag) 4
| 63 o Tob rastoosa v
I 657'_ 1
12 (54') l

Condition (70) for antisymmetrical buckling 1ie
eatisfied for any value Y, if
sini]q:sini}. =0
or 2 2 "%
%11=—:—12=n,2n,3n...

To these values are coordinated the points with the

ratios T if/miﬁ; and the buckling values

= _ (m +mg) . ,

k = ——;—1—53;— for m,,m, = 2,4,6 ...(mla‘:m 2i the values
with m, = m, drop out for the same reason as in the

corresponding case of one trensversal stiffener. Buck-
ling condition (71) for symmetrical buckling, independ-
ent of position and magnitude of the stiffener, is sat-
{afied for

-4 o
cos— A =cos-—A3=0
2 2

or o o n 37 5%
zh=ch=% 2%
To this correspond the points G, E with m,,m, =

1, 3, 5 .. (mg#m,).

¢) Exampleg.- For two equally large stiffeners at
equal distances (a, = a, = af/3) the buckling condi-

tions (70) and (71) become, after further splitting ups
sin%ll = sin% ,=o0, (72)
(2 — 22) &y 7.2(40052 - I)<4c052% 2 — 1>

-+ yn‘[— 7,1<4c052%11— I)Sin%22+ 12<4cosz% kg — I)sin ; ll]=0 73)
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o ok i . k v { m
" Gy "D, Ay, . By, Cs D,
— it oy Ay —COS &) Ay -
+ A3 sinoy Ay + A3 cos oy A4
— Ay cos oy Ay + Agsinay A, -
— A cos oy Ay + Alsin o, 4
sin (o 4 a',) Ay cos (o, + ag) Ay |—sin (@ + a5) 4 —cos {0ty + otg) Ay [—8in (@) + og) Ayl — COS (07 + x5} e
— 2 sin (og 4 otg) Ag| — A3 cOS (o + ag) Ay + Af sin (o + otg) Ayl A2 COS (0y + otg) Ayl -+ A3 8in (ot + ceg) A9+ A COS (o 0tg) Ag
L Ag €08 (o) + otg) Ag [— Agsin (o +otg) Ag [— 4, €OS (0ty +ctg) Ay |+ A, Sin (o0 +otg) 4y [—AyCOS(2x +org) A+ Ag sin(e; +ozg) }"“i
i
Beos (o, + ag) Ag | —Asin (& + ag)dy R
Fptsin (o + otg) Ag| -+ 7478 COS(0t + ) Ay — A8cos (0 +og) Ay [+ ATSin (o +eg) Ay |—ABCOS (00 +0g) Agl + A sin (o +ax0) Ay
sin o A, cos o 4, ' sin a A, cos o Ay
A% sin o 4, A} cos o Ay Adsin o Ay . A3 cos o Ay

for antisymmetricali dbuckling, and
cos ; 4 = cos ; Ay=0), 4 (74)

(22— 23 1112(40032% ).1—3>(4C052% 12—3) l

+ yat [— M (4 cos? .:.).1 — 3) sin-;. Ay + A5 (4 cos? »g Ay — 3) sin_;f. ).lJ =0 l
for symmetrical buckling.

(75)

The corresponding buckling stresses are given in
figure 15 for different values,

The equations for antisymmetrical duckling agree
with those for a plate with one transversal stiffener
at 1/3 of its length. (See (64) and (65), also fig. 14.)
The ratios a in those equations must be replaced by
a/2, The discussion of antisymmetrical duckling is
omitted since the buckling conditions (64) and (65)
have been discussed before.

From (74) we obtain the buckling values:
= (24 ) =123,

_ The plave buckles iike the nonstiffened plate with
3, 6, 9 «.. half-waves 1in longitudinal direction, so
that nodal lines arise at the stiffeners. The buckling
stresses from (75) give the curves for the symmetrical
buckling forms, for which the stiffeners also bend at.
buckling. These curves, 1ike the corrpapon&ing curves
of the antisymmetrical buckling, also approach asym tot-
jeally the minimum valune k = 4 for increasing rat o .
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Since buckling condition (75) is satisfied for any
value Y, 1if

4 cos® % Ay -~ 3 = 4 cos® % Ag = 3 =0
or

Sm, 7m
76

-6_-...'

ol

Ay o= F A o=

ol

it follows for the corresponding values

2
e = _ fmy + mp)
o =+/my; mpy and k = n

that m,,mp =1, 5, 7 «ss Therefore the curves, depending
on Y, touch each other at the intersections of the curves
for 1 and 5, 5 and 7 .. half-waves of the nonstiffened
plate., At the intersections of the curves for 1 and 3,

%2 and 5 ... half-waves of the nongtiffened plate, the buck-
ling condition (74), which is independent of Y, confirms
the already mentioned fact, that also in these points the
plate buckles independently of the stiffeners.

In the sections in which the buckling conditions give
the smallest buckline values, the curves are full lines,
It is evident from the continuous change of symmetrical
and antisymmetrical buckling forms that both types are of
equal significancse,

Translation by We. L. Koch,
California Institute
of Technology
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